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THE TWENTY-SECOND FERMAT NUMBER IS COMPOSITE 

R. CRANDALL, J. DOENIAS, C. NORRIE, AND J. YOUNG 

ABSTRACT. We have shown by machine proof that F22 = 2222 +1 is composite. 
In addition, we reenacted Young and Buell's 1988 resolution of F20 as com- 
posite, finding agreement with their final Selfridge-Hurwitz residues. We also 
resolved the character of all extant cofactors of Fn, n < 22, finding no new 
primes, and ruling out prime powers. 

1. METHOD OF PROOF 

The character of Fn = 22 + 1 for n > 1 may be resolved by way of the 
Pepin test. One form of this test states that for m > 2, if p = 2m + 1 is a 
quadratic nonresidue modulo an odd prime q, then p is prime if and only if 

q(p-)/2=_I- (mod p). 

We may compute and report, then, the residue Rn defined as a least nonnegative 
value, 

Rn = 3(Fn-1)/2 (mod Fn), 

to declare Fn prime or composite as Rn is or is not (Fn - 1) (mod Fn), re- 
spectively. The procedure of evaluating Rn has been used in previous years 
to prove various Fn composite. In fact, F7, F8, Flo, F13, F14, and F20 have 
been shown composite in this way [6, 8]. Note that many Fn can be shown 
composite with relative ease, by the simple expedient of exhibiting a small, ex- 
plicit factor. Selfridge and Hurwitz [6] started a practice of reporting, in their 
case for F7, F8, F13, and F14, the three numbers 

Rn (mod 23 - 1 , 236, 236 - 1). 

This three-modulus report is akin to a "parity check" or checksum, in that two 
independent random large integers have a probability of about 2-(35+36+36) of 
simultaneous agreement in all three moduli. The reporting of the three moduli 
is not, of course, a complete record of the Pepin residue; but such a report is 
convenient for two reasons. First, the three moduli are small and easy to shuttle 
between testing sites. Second, for n > 5, the simple fact of a nonvanishing 
second Selfridge-Hurwitz residue indicates that Fn is composite. 

2. LARGE-INTEGER ARITHMETIC 

The primary run for F22 was carried out on an Amdahl 5995M model 4550 
mainframe, with squaring (the central operation in the Pepin test) performed 

Received by the editor November 23, 1993 and, in revised form, February 15, 1994. 
1991 Mathematics Subject Classification. Primary 1 lYl 1, 1 lAS 1. 

(? 1995 American Mathematical Society 
0025-5718/95 $1.00 + $.25 per page 

863 



864 R. CRANDALL, J. DOENIAS, C. NORRIE, AND J. YOUNG 

via the discrete weighted transform (DWT) algorithm [2]. The DWT is es- 
sentially an FFT, but with signal elements weighted on foreknowledge that re- 
duction modulo F, will be performed. We chose a digit size W = 216, so 
that F22 = W2" + 1. In this representation a typical residue has 256K digits. 
Whereas the traditional "zero-padding" for (acyclic) FFT multiplication would 
involve a run length of N = 219, the DWT approach requires only run.length 
N/4 to perform the necessary negacyclic convolution, i.e., to obtain a square 
(mod F22). A (cyclic convolution) version of the DWT, appropriate in cases 
where reduction modulo 2q- 1 is to be performed after squaring, has also been 
used in recent Lucas-Lehmer verifications of new Mersenne primes, notably 
2756839 - 1 and 2859433 - 1 , those test cases having been communicated to us by 
D. Slowinski [7]. To convey an idea of scale for the Fermat numbers in ques- 
tion, we observe that even the cofactor of F21 is larger than the square of the 
latter, largest known Mersenne prime. It is perhaps also of interest that DWT 
methods were used for the elliptic-curve arithmetic that uncovered (via elliptic- 
curve (ECM) factorization) the two newest factors of F13 shown in Table 2 [1, 
2]. Many machines perform the FFT or DWT fastest when floating-point arith- 
metic is used. In order to control floating-point transform errors, we invoked a 
balanced-digit representation. Instead of digits conventionally in [0, W - 11, 
we adopted digits in [-W/2, W/2 - 1]. It is known empirically that such 
balanced representations reduce DWT convolution errors considerably [2]. 

3. MAIN RESULT 

There is always the question: How do we know our Pepin squares are cor- 
rect? One of the authors [CN] performed a novel, parallel determinism-checking 
task. In this scheme, the mainframe (thought of as a "wavefront") performed 
Pepin squares, depositing residues for, say, the ath square and the bth square. 
These square "endpoints" were stored for various pairs (a, b) and the differ- 
ence b - a relatively small, say, b - a , 1000. Then many workstations, 
even given a unique ath square, would perform b - a squarings, expecting 
to find the mainframe's reported bth square. The workstations used software 
programs different from the mainframe program. In addition, various deter- 
ministic points were checked by another author [JY] on Cray machinery. In the 
Cray runs, the hardware was obviously different, but the software was likewise 
different and so amounted to a third distinct implementation. 

The result is that R22 is not (F22-01) (mod F22), so F22 is indeed composite. 
Our Selfridge-Hurwitz moduli are reported below for reference by future inves- 
tigators. The "wavefront" run took more than seven months, with the parallel 
determinism check always running close behind. We estimate the total number 
of arithmetic operations (on machine words) be in excess of 1016. At various 
times during the long F22 run, we worked (with separate machinery) on other 
Fn in order to complete some heretofore missing entries in existing tables. We 
hereby report, as Table 1, all of the Selfridge-Hurwitz residues, in decimal, for 
5 < n < 22. A glance at R22 indicates that F22 is indeed composite; in fact 
the table amounts to a report that all Fn in the stated range are composite. The 
entries for R20 are in complete agreement with the report of [8] (although note 
that their three moduli were displayed in octal representation). 
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TABLE 1. Selfridge-Hurwitz residues (in decimal) for composite 
numbers F5 through F22. R, is the Pepin residue 3(F - 1)/2 

(mod F,). For n > 5, primality of Fn would necessitate the 
value zero in the (mod 236) column 

n Rn (mod 235 -1) Rn (mod 236) Rn (mod 236 - 1) 
5 10324303 10324303 10324303 
6 9190530327 8845352501 9017941414 
7 5799525263 3909272836 44591026080 
8 30627284506 46310188723 35403253324 
9 28173182079 19661770102 54966870189 
10 28022031617 36399120536 54182679152 
11 3934743084 66666487080 44928212591 
12 300454051 64546579219 3387502849 
13 3434508623 52529728350 52864871946 
14 15173315214 54038984522 1986493987 
15 14110954287 7124011679 42435904961 
16 173595305 24695037109 65390296136 
17 14982977589 14726733277 2770550506 
18 10874364700 46106404592 14070013587 
19 6407009455 22254317980 58676148574 
20 15265819636 16865158641 35626292569 
21 30981963597 22442941248 300257643 
22 12323430823 973723434 8733349067 

4. PRIMALITY TESTS FOR THE COFACTORS 

A convenient primality test for Fermat cofactors is due to Suyama [3]. Let 

Fn = fG, 

where f is, say, a known small factor (not necessarily prime) and the character 
of G is in question. If G is prime, then it must happen that 3G = 3 (mod G). 
This in turn can be cast as 

R= - 3f-l (mod G). 

The beauty of the Suyama test is that it can be run on the Rn that has already 
been computed as the final Pepin residue. If this last congruence fails, G is 
composite. Note also that the power f - 1 tends to be relatively small, so just a 
handful of squarings and multiplications are required to resolve currently extant 
cofactors (once Rn is in hand). Incidentally, for the larger Fermat numbers in 
our stated range, it is more efficient to compute first R2 and 3f-l (mod Fn), 
then to effect a final reduction modulo Gn . The reason is that arithmetic mod- 
ulo a Fermat number can be carried out with shifts and adds/subtracts alone. 
For n < 22, we resolved the two open cases; namely: 

Fl9 = f19 * Glg = 45610729320124449292289 * Glg 
F21 f f2l * G21 = 4485296422913 * G21 

finding both G cofactors composite. For possible use by future investigators, 
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we report the Suyama residues: 

(R29 (modG19)) (mod 216) = 51945, 

(3f19-1 (mod Gi9)) (mod 216) = 14357, 

(R2I (modG21)) (mod 216) = 41530, 

(3f21-1 (mod G20)) (mod 216) = 40393, 

where every modulus is given its least nonnegative value. 

5. PRIME POWERS 

It was recommended to us by H. W. Lenstra Jr. that, for the convenience 
of future investigators, we also verify (the practical expectation) that none of 
the proven composites is a prime power. First, we know Fn cannot itself be a 
prime power pk, k > 1, because the Diophantine equation pk - 4m = 1 for 
k > 1 has no solutions. This is easy to see: If a solution exists and k is even, 
we have two positive squares that differ by 1, so k must be odd. But then pk -1 
has the odd algebraic factor 1 + p + ... + pk-l , which cannot divide 4m . This 
takes care of F22, which therefore is neither p nor pk. As for the cofactors 
Gi9, G21 , there are at least two equivalent ways to show neither can be a prime 
power. One is to adopt the test used by the factorers of Fg [4], which is to test 

GCD(aG - a, G) 

for an a such that G does not divide aG - a. If this GCD = 1, G cannot 
be a prime power. Luckily, we already had all the basic terms in hand for this 
test. In fact, the GCD can be turned immediately into 

GCD((3f)G - 3f, G) = GCD(3R2 - 3f, G) = GCD(R2 - 3f-1, G), 

so that the Suyama compositeness test for G can be modified slightly to rule 
out both primality and prime-power structure: take the GCD of the difference 
of the two Suyama residues with G. If this GCD = 1, then G is neither a 
prime p nor p/c 

Taking a GCD of two numbers both in the million-bit region is problematic 
(we used a fast, recursive GCD implementation due to J. P. Buhler, because 
the classical Euclid algorithm is quite lethargic for numbers in this region). To 
avoid GCD altogether, a second approach is to assume that a sieving limit on 
G, is known, say G, is divisible only by primes > P,. Then for all k < 
log G, / log P,, show that G, cannot be a kth power by comparing, for small 
primes q, G, (mod q) and possible kth powers (mod q) until an impossibility 
(mod q) results for any q. As a practical matter, this test is competitive with 
the previous GCD test for n > 16. Though sieve results are required to limit 
the search on k, the GCD test required a Pepin residue or equivalent base a 
to have been calculated. So both methods require some preparation. 

6. STATUS OF FERMAT NUMBERS, n < 22 

Table 2 shows the current status, to the authors' knowledge, of Fn, n < 22. 
Some salient observations are as follows. Fg is a triumph of the Number Field 
Sieve [NFS] method [4]. However, NFS so far appears difficult to implement 
effectively for any larger Fn . Flo is the smallest Fermat number not completely 
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TABLE 2. Status table for Fermat numbers Fn; 0 < n < 22. 
References for the factors are [1, 3, 4, 5]. The notation means: 
P = proven prime, C = proven composite. Boldface C indi- 
cates a result of the present report. None of the C, C cofac- 
tors is a prime power 

n Fn 
0, 1,2,3,4 P 
5 641* 6700417 
6 274177 * 67280421310721 
7 59649589127497217 * 5704689200685129054721 
8 1238926361552897 * P 
9 2424833* 

7455602825647884208337395736200454918783366342657 * P 
10 45592577 * 6487031809 * C 
11 319489* 974849* 

167988556341760475137 * 3560841906445833920513 * P 
12 114689 * 26017793 * 63766529 * 190274191361 * 1256132134125569* C 
13 2710954639361 * 2663848877152141313 * 3603109844542291969 * C 
14 C 

15 1214251009 * 2327042503868417 * C 
16 825753601 * C 
17 31065037602817* C 
18 13631489* C 
19 70525124609 * 646730219521 * C 
20 C 

21 4485296422913 * C 
22 C 

factored (though F11 is completed). F14 is the smallest "genuine composite" 
amongst the Fermat numbers; i.e., compositeness is proved but no factor is yet 
known. Aspiring factorers should know that factors for the midrange, say, Flo 
through F14, have been fairly well weeded out by applications of ECM, in the 
sense that there are probably no more hidden factors in this range possessed of 
less than thirty digits (but one cannot be completely sure yet-the observation is 
merely statistically motivated). A factorer should also note the sieving limits, as 
reported in [3], indicating that, in the higher range n = 18 - 22, hidden factors 
(k2n+2 + 1) have been ruled out for k < 236. One might therefore summarize 
the current factoring status as follows: Direct sieving is a nearly exhausted 
option, the ECM may have just a little potential left (e.g., for the upper regions 
of Table 2), while the NFS seems hard to apply at any higher levels n > 9. Then 
there is the problem of the character of F24, which character, on the basis of 
Pepin test complexity, would require (at the computation rate we have enjoyed) 
about ten years to resolve. Thus, as has always been the case with the Fermat 
numbers, many great challenges abound. 

Note added in proof. The authors were notified by V. Trevisan and J. Carvalho, 
of Supercomputing Center (CESUP) of Universidade Federal do Rio Grande 
do Sul, Brazil, of a second calculation. They too find F22 composite. Their 
computation finished nine months after ours, but was performed entirely in- 
dependently. In fact they were not aware of our result until they had finished. 
Furthermore, they reported to us exactly the same set of three Selfridge-Hurwitz 
residues as listed in our Table 1. 
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